Septiembre 2006 opción A. Humanidades y Ciencias Sociales.

1)
$$AB + A = 2B^{t}$$
 $A(B+I) = 2B^{t}$ $A(B+I)(B+I)^{-1} = 2B^{t}(B+I)^{-1}$ $A = 2B^{t}(B+I)^{-1}$

$$B + I = \begin{pmatrix} 3 & -1 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 4 & -1 \\ 0 & 3 \end{pmatrix} \qquad (B + I)^{-1} = \frac{1}{12} \begin{pmatrix} 3 & 1 \\ 0 & 4 \end{pmatrix} = \begin{pmatrix} \frac{1}{4} & \frac{1}{12} \\ 0 & \frac{1}{3} \end{pmatrix} \qquad B^{t} = \begin{pmatrix} 3 & 0 \\ -1 & 2 \end{pmatrix}$$

$$A = 2B^{t}(B+I)^{-1} = 2\begin{pmatrix} 3 & 0 \\ -1 & 2 \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{4} & \frac{1}{12} \\ 0 & \frac{1}{3} \end{pmatrix} = 2\begin{pmatrix} \frac{3}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{7}{12} \end{pmatrix} = \begin{pmatrix} \frac{3}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{7}{6} \end{pmatrix}$$

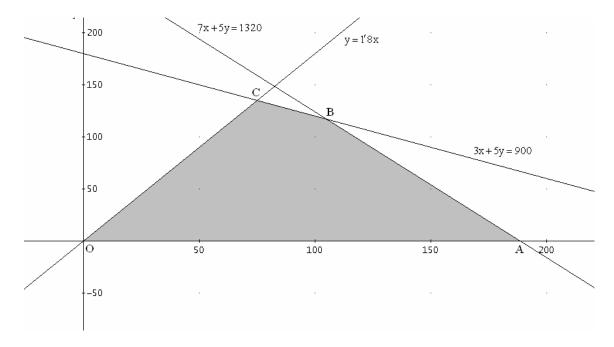
2) Llamamos "x" al nº de litros producidos de whisky 1 e "y" al nº de litros de whisky 2.

	Litros	Malta A	Malta B	Ingresos
Whisky1	X	0′7 x	0'3 x	12 x
Whisky 2	y	0′5 y	0′5 y	16 y
Disponible		132	90	

La función objetivo a maximizar es: F(x,y) = 12x + 16y con las restricciones siguientes:

$$\begin{array}{c} x \geq 0 \\ y \geq 0 \\ 0'7 \ x + 0'5 \ y \leq 132 \\ 0'3 \ x + 0'5 \ y \leq 90 \\ y \leq x + 0'8 \ x \end{array} \right) \qquad \begin{array}{c} x \geq 0 \\ y \geq 0 \\ 7 \ x + 5 \ y \leq 1320 \\ 3 \ x + 5 \ y \leq 900 \\ y \leq 1'8 \ x \end{array} \right)$$

Representamos gráficamente las rectas 7x + 5y = 1320 3x + 5y = 900 y = 1'8x



Calculamos los puntos de cortes de las rectas correspondientes a los vértices de la región factible.

O(0,0)
$$A(188'57,0)$$
 $\begin{cases} 7x + 5y = 1320 \\ 3x + 5y = 900 \end{cases} \rightarrow B(105,117)$
 $\begin{cases} 3x + 5y = 900 \\ y = 1'8x \end{cases} \rightarrow C(75,135)$

Sustituyendo A, B y C en la función objetivo obtenemos:

$$F(188'57,0) = 12 \cdot 188'57 + 16 \cdot 0 = 2262'84 \qquad F(105,117) = 12 \cdot 105 + 16 \cdot 117 = 3132$$
$$F(75,135) = 12 \cdot 75 + 16 \cdot 135 = 3060$$

El máximo se alcanza en el punto B y por tanto la destilería debe fabricar 105 litros de whisky del tipo 1y 117 litros de whisky del tipo 2, con unos ingresos de 3132 €

3) a) En
$$x = -1$$

$$f(-1) = -a + 2$$

$$\lim_{\substack{x \to -1^{-} \\ x \to -1^{+}}} (3x+a) = -3+a$$

$$\lim_{\substack{x \to -1^{+} \\ x \to -1^{+}}} (ax+2) = -a+2$$

$$\rightarrow -3+a = -a+2 \implies a = 2'5$$

Para que exista el límite en el punto x = -1 el valor de "a" debe de ser a = 2'5.

b) Si
$$a = 0$$
 $f(x) = \begin{cases} 3x & x < -1 \\ 2 & -1 \le x < 1 \\ \frac{2x - 11}{x - 3} & x \ge 1 \end{cases}$

En
$$x = -1$$

$$f(-1) = 2$$

$$\lim_{\substack{x \to -1^{-} \\ \lim_{x \to -1^{+}} 2 = 2}} 3x = -3$$

$$\rightarrow -3 \neq 2 \Rightarrow \exists \lim_{x \to -1} f(x)$$

En
$$x = 1$$

$$f(1) = 4'5$$

$$\lim_{x \to +1^{-}} 2 = 2$$

$$\lim_{x \to +1^{+}} \frac{2x-11}{x-3} = 4'5$$

$$\rightarrow 2 \neq 4'5 \quad \Rightarrow \quad \exists \lim_{x \to +1} f(x)$$

En
$$x = 3$$

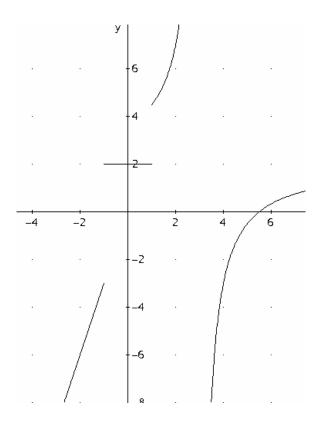
$$\lim_{x \to +3^{-}} \frac{2x-11}{x-3} = +\infty$$

$$\lim_{x \to +3^{+}} \frac{2x-11}{x-3} = -\infty$$

$$\Rightarrow \exists \lim_{x \to +1} f(x)$$

Conclusión

La función es continua $\forall x \in [-\infty, -1[\cup]-1, 1[\cup]1, 3[\cup]3, \infty[$. En x = -1 y x = 1 la función presenta una discontinuidad inevitable de salto finito, y en x = 3 la función presenta una discontinuidad inevitable de salto infinito. Todo lo anterior queda reflejado en la gráfica siguiente:



c)
$$\int_{-2}^{2} (x^3 - 2) dx = \left[\frac{x^4}{4} - 2x \right]_{-2}^{2} = 4 - 4 - (4 + 4) = -8$$

4) Sea M el suceso sintonizar la cadena Music y R el suceso sintonizar la cadena Rhythm.

Conocemos los sucesos p(M) = 0'35

$$p(\overline{M}) = 0'65$$

$$p(M \cap R) = 0'1$$

$$p(\overline{M} \cap \overline{R}) = 0'55$$

Con los datos anteriores podemos construir la siguiente tabla de contingencia

	M	$\overline{\mathbf{M}}$	
R	0'1		
R		0′55	
	0'35	0'65	1

	->

	M	$\overline{\mathbf{M}}$	
R	0'1	0'1	0'2
R	0'25	0′55	0'8
	0′35	0'65	1

Con los datos anteriores tenemos:

a)
$$p(R) = 0'2$$

b)
$$p(R \cap \overline{M}) = 0'1$$

c)
$$p(M/R) = \frac{p(M \cap R)}{p(R)} = \frac{0'1}{0'2} = 0'5$$

Septiembre 2006 opción B. Humanidades y Ciencias Sociales.

 Llamamos "x" al número de alumnos del grupo A, "y" al número de alumnos del grupo B y "z" al número de alumnos del grupo C. Con los datos del problema podemos plantear el siguiente sistema de ecuaciones:

$$\begin{array}{c}
 x + y + z = 65 \\
 \frac{x}{2} + \frac{4}{5}y + \frac{2}{3}z = 42 \\
 \frac{3}{4}x + y + \frac{2}{3}z = 52
 \end{array}
 \Rightarrow
 \begin{array}{c}
 x + y + z = 65 \\
 + 15x + 24y + 20z = 1260 \\
 9x + 12y + 8z = 624
 \end{array}
 \Rightarrow
 \begin{cases}
 x = 24 \\
 y = 20 \\
 z = 21
 \end{cases}$$

Es decir, hay 24 alumnos del grupo A, 20 del grupo B y 21 del grupo C.

2) a) El denominador es siempre positivo, por tanto $D[f(x)] = \forall x \in R$

Cortes con OX
$$\to y = 0$$
 $\frac{2x}{x^2 + 1} = 0$ $2x = 0$ $x = 0$ $P(0,0)$

Corte con OY
$$\to x = 0$$
 $y = \frac{0}{0+1} = 0$ $y = 0$ $P(0,0)$

b) No hay asíntotas verticales.

$$\lim_{x \to -\infty} \frac{2x}{x^2 + 1} = 0$$

$$\lim_{x \to +\infty} \frac{2x}{x^2 + 1} = 0$$

$$\lim_{x \to +\infty} \frac{2x}{x^2 + 1} = 0 \implies y = 0 \text{ es una asíntota horizontal}$$

c)
$$f'(x) = \frac{2(x^2+1)-2x\cdot 2x}{(x^2+1)^2} = \frac{-2x^2+2}{(x^2+1)^2}$$
 $-2x^2+2=0 \implies \begin{cases} x=-1\\ x=1 \end{cases}$

$$f'(-2) < 0$$

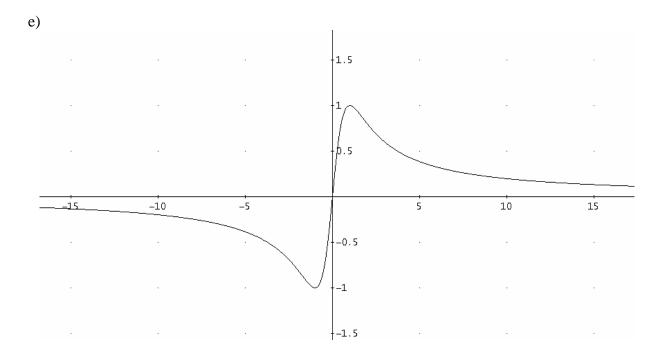
 $f'(0) > 0$
 $f'(2) < 0$
 -1
 1

La función es decreciente $\forall x \in]-\infty, -1[\cup]1, \infty[$

La función es creciente $\forall x \in [-1,1]$

d) Máximo relativo en el punto $(1, f(1)) \rightarrow P(1, 1)$

Mínimo relativo en el punto $(-1, f(-1)) \rightarrow P(-1, 1)$



3) El dominio es $\forall t \in [0,6]$.

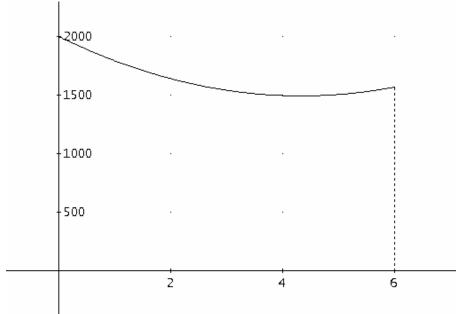
$$C'(t) = -234 + 54t = 0 \rightarrow t = \frac{13}{3}$$

$$C'(t) = -234 + 54t = 0 \rightarrow t = \frac{13}{3}$$
 $C''(t) = 54 > 0 \Rightarrow t = \frac{13}{3}$ es mínimo relativo.

Calculamos el valor que toma la función en dicho punto y en los extremos del intervalo.

$$C\left(\frac{13}{3}\right) = 1493 \in C(0) = 2000 \in C(6) = 1568 \in$$

- a) El máximo absoluto se produce para t = 0 (cuando abre al público) y es de 2000 €
- b) El mínimo absoluto se produce al cabo de $t = \frac{13}{3}$ horas y es de 1493 €



4) Sean A y B los dos sucesos aleatorios independientes.

La probabilidad de que ocurran los dos simultáneamente es: $p(A \cap B) = \frac{3}{25}$ La probabilidad de que ocurra al menos uno de los dos es: $p(A \cup B) = \frac{17}{25}$

Como los sucesos son independientes se verifica: $p(A \cap B) = p(A) \cdot p(B) = \frac{3}{25}$

Por otra parte sabemos que para todo par de sucesos A y B se verifica:

$$p(A \cup B) = p(A) + p(B) - p(A \cap B) = \frac{17}{25}$$

$$p(A) \cdot p(B) = \frac{3}{25}$$

$$p(A) + p(B) - \frac{3}{25} = \frac{17}{25}$$

$$p(A) \cdot p(B) = \frac{3}{25}$$

$$p(A) + p(B) = \frac{3}{25}$$

$$25[p(B)]^{2} - 20p(B) + 3 = 0 \implies \begin{cases} p(B) = \frac{3}{5} \\ p(B) = \frac{1}{5} \end{cases}$$

Si
$$p(B) = \frac{3}{5} \implies p(A) = \frac{1}{5} \quad \text{y si } p(B) = \frac{1}{5} \implies p(A) = \frac{3}{5}$$